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LETTER TO THE EDITOR 

Is there a lower critical dimension for chemical distance? 

Boyd F Edwards and Alan R Kerstein 
Sandia National Laboratories, Livermore, CA 94550, USA 

Received 8 July 1985 

Abstract. Estimates of the fractal dimension 4 for ‘chemical distance’ (shortest-path 
distance) between points on a percolation cluster are inferred from computations of the 
first-passage velocity U( p )  on square ( d  = 2) and simple cubic ( d  = 3)  bond lattices with 
bonds randomly assigned time delay b with probability p ,  otherwise time delay a >> b. The 
computations, implemented on strips in a manner analogous to the transfer matrix for 
conductivity, yield estimates of 4 based on a new scaling law, U( p , )  - a-’(a/b)lld, where 
pc  is the percolation threshold for b-bonds. For d = 2, we obtain 4 = 1.021 *0.005, which 
is significantly lower than previous estimates. For d = 3 ,  we obtain q5= 1.26i0.06, in 
agreement with the Havlin-Nossal proposal 4 = d - (1 + /3)/ U. Our results do not exclude 
the possibility that 4 = 1 for d = 2, indicating that the chemical distance may be non-fractal 
below some lower critical dimension between two and three. 

It has been proposed and, apparently, confirmed computationally (Grassberger 1985a, 
and references cited therein) that the ‘chemical distance’ (Havlin and Nossal 1984), 
or shortest path between points on a percolation cluster obeys 

r - R m ,  

where r is the path length, R >> 1 is the Euclidean distance between the points, and 
for spatial dimension d 5 2, the fractal exponent 4 obeys 4 > 1. In particular, a recent 
two-dimensional computation (Grassberger 1985a) gives 4 = 1.132 f 0.003, which 
excludes the proposal (Havlin and Nossal 1984) 4 = d - (1 + p ) /  v, but is consistent 
with numerous earlier results (summarised in Grassberger 1985a) which generally fall 
within the range 1.1 < 4 < 1.2. 

The value 4 = 1.021 * 0.005 which we obtain for d = 2 is significantly different from 
estimates obtained previously. In our computations, 4 is estimated by a novel method, 
exploiting a new scaling law which we derive shortly. We remark at the outset that 
the key difference between our approach and previous computations is that we extrapo- 
late a sequence of estimates of 4 with respect to a parameter L characterising the size 
of the computational domain. Grassberger’s result and our extrapolated result for the 
L value corresponding to his computational domain are in excellent agreement, 
indicating that our result and previous results are consistent if the latter are interpreted 
as finite-l estimates. 

Grassberger estimates 4 by building the ‘infinite’ percolation cluster at p = p c  for 
a square bond lattice, starting from one edge of a rectangular box and adding one 
‘chemical layer’ per time step. Actually, any such cluster must eventually terminate 
due to the finite span of the starting edge. One way to avoid possible statistical bias 
associated with cluster termination is to build clusters outward from the starting edge 
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only to a distance which is short compared with the span of the edge. In fact, 
Grassberger's starting edge is 3840 lattice spacings wide and his clusters propagate 
outward by at most 600 lattice spacings, consistent with this restriction. 

Our approach overcomes this restriction. We consider the problem of first-passage 
percolation (Wierman 1982 and references cited therein) for square ( d  = 2) and simple 
cubic ( d  = 3)  bond lattices with bonds randomly assigned time delay b with probability 
p ,  otherwise assigned time delay a >> b. For simplicity, we specialise the discussion to 
d = 2. Starting from an edge of span L, the propagation front of 'wetted' sites can be 
developed indefinitely outward from this edge provided that a is finite. Denoting the 
furthest distance of a 'wetted' site from the starting edge as x( t ) ,  then x(  t )  converges 
for large t to a constant, the first passage velocity. 

From the computational viewpoint, propagation along a strip of width L offers 
advantages analogous to those of the transfer-matrix (Vannimenus and Nadal 1984) 
method for computation of conductivity in this geometry. In fact, we can exploit the 
analogy to the conductivity problem in order to obtain scaling laws relating U to a, b, 
and p .  We adopt the homogeneous function representation developed by Straley (1976) 
for the conductivity problem. The propagation analogue of his equation (2) is 

U = pS(&A-' ,  K'p-lA-' ,  pbA-'), (2) 

where the macroscopic effective conductivity is replaced by and the dielectric-bond 
and metallic-bond conductances are replaced by a-' and b-' respectively. As in 
Straley's analysis, E = p - p c ,  p can be chosen arbitrarily due to invariance under scale 
transformation, A is the scaling parameter representing proximity to the critical point, 
and $ and 0 are critical exponents whose significance is demonstrated shortly. Equation 
(2) is presumed to be valid in the limit of small A. 

Particular cases of equation (2) yield known scaling laws and an additional scaling 
law which we will exploit. The substitutions a = 00, A = E > 0, and p = b-'A e give 

U = Eeb-'S( 1,0, 1). (3) 
This is the scaling law for the 'chemical propagation' regime (Kerstein 1985b) of 
first-passage percolation, where 0 obeys (Grassberger 1983, Ritzenberg and Cohen 1984) 

e = Y ( 4  - 1). (4) 

U = (E(-"a- 'S(- l ,  1,O). ( 5 )  

The substitutions b = 0, A = - E  > 0 and p = u-'A-' give 

This is the scaling law for a particular case of the 'contact propagation' regime of 
first-passage percolation, where for this case, $ = Y (Kerstein 1985b). Finally, the 
substitutions E = 0, A = b / a ,  and p = b-'A e give 

U = (b/a)e/('+')b-'S(O, 1, 1). (6) 
This is a new result, giving the dependence of U on the ratio a /  b at p = pc  Substituting, 
equation (4) and $ = v into equation (6) gives 

~ - a - ' ( a / b ) ' ' ' .  (7) 
Elsewhere (Kerstein and Edwards 1985), we present a derivation of equation ( 6 )  

which does not depend on the homogeneous function representation. Straley (1983) 
has similarly presented an alternative derivation of the conductivity analogue of 
equation (6). The conductivity analogue has recently been verified computationally 
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for d = 2 (Bunde et al 1985). The computational results discussed here, in addition 
to providing estimates of 4, serve to verify the new scaling law for d = 2 and d = 3 .  

Equation (7), while providing us with a means of overcoming the cluster-termination 
problem mentioned earlier, does not entirely circumvent finite-size effects. In particular, 
equation (7) predicts that for fixed a, v diverges as b approaches zero. However, on 
a strip of finite width L, the effective correlation length at p = p c  is of order L, so any 
b-cluster through which the front is propagating will terminate in a distance of this 
order. To get to the next b-cluster, the front must cross at least one a-bond. From 
this we conclude that v cannot exceed order Lla ,  therefore there must be a crossover 
from the scaling predicted by equation (7) to 

v -  L / a  (8) 
when L / a  = a-'(a/b)''4. 

Our calculation employs periodic transverse boundary conditions, which avoid 
surface effects associated with fixed boundary conditions (Herrmann et a1 1984, 
Rapaport 1985). Although a finite longitudinal span of 3L is used for the computations, 
periodic longitudinal boundary conditions are applied so that the computational 
domain is traversed repeatedly, simulating propagation along an infinite strip. New 
bonds are randomly generated just ahead of the furthest longitudinal advance x(  t )  of 
the 'wetted' front as the front propagates. Test cases with longitudinal span larger 
than 3L confirm that our algorithm is equivalent to propagation on an infinite strip. 

Each estimate of the first-passage velocity U is based on five independent replicate 
simulations, from which the mean value and the standard deviation of v are computed. 
For each replicate, propagation along a longitudinal distance of order lo3 lattice 
spacings is dedicated to elimination of initial transients, and the first-passage velocity 
is taken to be the remaining propagation distance (of order lo4 lattice spacings) divided 
by the corresponding passage time. The computations are discussed in greater detail 
elsewhere (Kerstein and Edwards 1985). 

Figure 1 shows first-passage velocities as a function of the ratio a /  b of time delays 
at the percolation threshold p = p c ,  which is exactly 0.5 for a square bond lattice 
(Wierman 1982). To vary a /  b, we take a = 1 and vary b. Computations were performed 
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0 
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Figure 1. Estimated first-passage velocity v at p = p c  against bond time-delay ratio a /  b for 
the square bond lattice ( d  = 2 )  for strip width L = 8  (0), 32 (U) and 128 (0). Fitted line 
segments indicate the respective finite a /  b scaling regimes. 
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for L values ranging from 6 to 256 for d = 2. For clarity, only representative L values 
( L  = 8, 32 and 128) are shown. Fitted line segments indicate the regimes of finite a /  b 
scaling according to equation (7) .  (Additional data confirming equation (7 )  for d = 2 
and d = 3 are presented in Kerstein and Edwards (1985).) The slopes of these weighted 
linear least-squares fits give estimates of 1/4(L) ,  where 4 ( L )  is the fractal exponent 
at finite L. Departures from scaling at higher values of a / b  signal the crossover to 
finite-size scaling. The finite-size scaling regime (equation (8)) was verified previously 
in the context of a stirred percolation problem (Kerstein 1985a). 

To ensure reliable estimates of 4 ( L ) ,  we use a statistical procedure to select the 
points included in the linear fits. Starting with a range of points wider than the scaling 
regime, points are removed from either end until the weighted sum of squared devi- 
ations, x 2 ,  attains a reasonable value based on the x2 distribution for the number of 
fitted points. The line segments in figure 1 include only the points used in the fits. 

Figure 2 shows our estimates of r$( L )  for d = 2 (circles) as a function of l / ln  L. 
The usual (Adler er a1 1983, Binder and Stauffer 1984, Kerstein and Edwards 1985) 
correction-to-scaling analysis predicts a dependence on L of the form 4 ( L )  = 
4 + (c,/ln L)(  1 + c2L-"). The high degree of linearity of 4( L) ,  when plotted with respect 
to l / ln  L, indicates that c2 and/or the correction-to-scaling exponent w is close to zero. 
Therefore we extrapolate to the intercept at L = 00 based on a weighted linear least- 
squares fit (full line) to our data, obtaining the estimate 4 = 1.021 *0.005. For com- 
parison, Grassberger's estimate (0) is plotted at L = 600, which is an upper bound on 
the x ( r )  values reached in his simulations. The actual L value corresponding to his 
simulations may be smaller, but nonetheless, it is clear that our extrapolated line is in 
excellent agreement with Grassberger's estimate, provided that the latter is interpreted 
as a finite-L approximation. The precision of this agreement is fortuitous because, as 
we show elsewhere (Kerstein and Edwards 1985), different methods for computing 
4 ( L )  can yield different estimates for given finite L, with convergence of the different 
methods occurring only in the large-L limit. This observation may account for the 

0 0 2  0.4 0 6  
I l l n L  

Figure 2. Estimated chemical distance exponent +(L) against l / ln  L for d = 2 based on 
present computations (0) and a previous (Grassberger 1985a) computation (U), and for 
d = 3 based on  present computations (0) and a previous (Grassberger 1985b) computation 
(A).  Also shown are weighted linear fits (full), a weighted parabolic fit for d = 2 constrained 
to intercept + = 1 at L = m  (broken), and a weighted parabolic fit with unconstrained 
intercept for d = 3 (chain). Inset: Weighted sum of squared deviations x 2  (in relative units) 
against constrained intercept + based on weighted parabolic fits for d = 2. 
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discrepancies noted by Grassberger (1985a) among the various estimates quoted in 
the literature. 

Our estimate is so close to unity that it warrants an assessment of the possibility 
that q5 is exactly unity for d = 2, especially since the exact functional dependence of 
q5( L )  on L is not known. Accordingly, we perform weighted parabolic fits to our data 
with predetermined values of the intercept. The inset to figure 2 shows ,y2 from these 
fits (in relative units) as a function of the intercept. The minimum at q5 = 1.019 is in 
agreement with the linear estimate q5 = 1.021 ztO.005, indicating that the quadratic 
correction predicted by the data is insignificant. Even so, ,y2 from z parabolic fit with 
intercept at q5 = 1 (broken curve) exceeds the minimum ,yz by only 13%. Hence we 
cannot exclude the possibility that 4 = 1 for d = 2. 

Also shown in figure 2 are the computed estimates (0)  of + ( L )  for the simple cubic 
bond lattice, for which we take p c  = 0.2492 (Wilke 1983). For d = 3, the computations 
employ a finite span L in the two transverse directions which ranges from 6 to 48. 
Due to the apparent curvature of the data, we extrapolate to L = CO using two different 
procedures, a weighted linear fit to estimates for the five highest L values, and a 
weighted parabolic fit to all the data, both with unconstrained intercept. We take the 
average of the indicated intercepts to be our best estimate of q5 for d = 3, and half the 
difference of the intercepts to be the uncertainty, giving q5 = 1.26*0.06. This result is 
in agreement with the proposed scaling law of Havlin and Nossal (1984), which predicts 
q5 = 1.35 for d = 3. For comparison, Grassberger’s (1985b) estimate (A) is plotted at 
L = 120, which is an upper bound on the x( t )  values reached in his three-dimensional 
simulations. 

Finally, we speculate on the implications of the result that q5 may be exactly unity 
for d = 2. This result is in strong disagreement with the Havlin-Nossal proposal which, 
however, appears to be in agreement with computed results, including ours, for d 3 3. 
An interpretation consistent with these observations is that the Havlin-Nossal proposal 
is valid only above a lower critical dimension dl, where 2 S dl < 3, rather than the trivial 
value dl = 1 .  (Below dl, the chemical distance is non-fractal, so q5 = 1 . )  The theoretical 
significance of this interpretation is an open question. 

The authors would like to thank Amy Bug and Muhammad Sahivni for helpful 
discussions. This research was supported by the Office of Basic Energy Sciences, US 
Department of Energy. 

Note added in proof. Our numerical results are in good agreement with the Flory calculation by Roux (1985). 
Cardy and Grassberger (1985) have recently shown that the Havlin-Nossal proposal cannot be exact for 
any d because it disagrees with the E expansion 
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